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ABSTRACT

The moving object detection always remains an active field of research given the variety of challenges
related to this topic. In fact, most of the challenges related to the low illumination and weather con-
ditions (fog, snow, rain, etc.) remain unresolved and require more developments. In this paper, our
intrinsic objective is to overcome these challenges using an effective moving object detection method.
Unlike most works in the literature that use one of the two infrared or visible spectra independently, we
proposed a Moving Object Detection method based on background modeling using the Full-Spectrum
Light Sources (FSLS-MOD). To better ensure the adaptability and independence of the moving object
speeds and sizes, the principle of the inter-frame differences’ methods is introduced in the background
modeling stage. Furthermore, we applied a new strategy to switch between the spectra allowing us
to benefit from the advantages of each spectrum and carry out a better moving object detection even
in bad weather conditions. An experimental study by quantitative and qualitative evaluations proved
the robustness and effectiveness of our proposed method of moving object detection using the switch-
ing strategy between full-spectrum light sources under different illuminations and weather conditions.
Keywords: Full-spectrum Light Sources; Weather Conditions Classification; Moving Object Detec-

tion; Thermal Infrared Camera

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to extract information regarding moving objects is
a crucial factor of intelligent video surveillance systems perfor-
mance. Although the moving object detection was very devel-
oped in the literature, it still remains an active area of research
and the object of many studies. According to previous research,
existing approaches for motion detection in video surveillance
systems can be classified in four categories: inter-frame differ-
ences Cheng and Wang (2014); Haritaoglu et al. (2000), back-
ground modeling Chen and Liu (2014); Bouwmans (2014), op-
tical flow Ribeiro et al. (2018); Qi and An (2011) and hybrid
methods Kushwaha et al. (2017); Yin et al. (2016). The di-
versity of research is related to the complexity of the observed
scenes which present a variety of challenges. These challenges
are mainly related to the problems of background, moving ob-
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jects or acquisition materials. In the literature, many works
have tackled these challenges and several hand-crafted solu-
tions have been proposed to overcome most of them Lim and
Keles (2018); Qin et al. (2016). In addition, recent deep learn-
ing based methods, especially the convolutional neural net-
works (CNN), were proposed for robust targets detection Lin
et al. (2018a,b); Wang et al. (2018). However, the challenges
related to the bad weather conditions (such as fog, snow, rain,
darkness, etc.) remain unresolved and require more substantial
research to find efficient solutions. In video surveillance, we
can rely on either a visible spectrum or an infrared one. How-
ever, the methods based only on the visible spectrum suffers
from such limitations as failure to face shadows, camouflage,
night or poor visibility conditions caused by weather conditions
such as fog, rain and snow. Furthermore, an infrared-based sys-
tem may find it difficult to handle some information in certain
situations. For example, during a hot sunny day, it will high-
light almost the entire image, so it will provide a lot of hot ar-
eas or objects. Thus, the use of a visible sensor with an infrared
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sensor makes the vision systems more robust and enables them
to function under various lighting and climatic conditions, dur-
ing both day and night, in summer as well as in winter Conaire
et al. (2005); Yan et al. (2018). Since our basic objective is
to achieve an accurate moving object detection during the day
(morning, afternoon and night) for particular hot objects such
as people and vehicles, we opted for use the full-spectrum light
sources. In this paper, we proposed a moving object detection
method with a new switching strategy between the spectra light
sources allowing us to take advantage of each of them, without
the need to correlate the spectra nor to generate a fused spec-
trum. Our switching strategy ensures an accurate moving object
detection despite the challenges related to the low illumination
and bad weather conditions. In fact, the visible spectrum is used
on sunny days under normal weather conditions, while the in-
frared spectrum will be used in bad weather conditions such as
fog, rain, snow, etc. or at night. In addition, for the moving ob-
ject detection we have adapted a method developped previously
in our research team Hammami et al. (2013). In fact, our mov-
ing object detection method is based on background modeling
and finds its originality in the integration of the principle of
the methods based on inter-frame differences in the stage of the
background modeling and in the way in which this integration
was carried out, making it more adaptable and independent of
the moving object speeds and sizes. The remainder of this pa-
per is organized as follows: Section 2 introduces our proposed
methods of switching between the full-spectrum light sources
and the moving object detection. The experimental results of
our work are displayed in Section 3. Finally, our conclusion
and future work are stated in Section 4.

2. Proposed method for moving object detection using full-
spectrum light sources (FSLS-MOD)

In this paper, we suggested a moving object detection method
using the full-spectrum light sources, which follows an appro-
priate temporal behavior. In fact, we introduced a new switch-
ing strategy between the spectra light sources allowing us to
profit from the advantages of each spectrum. The process of
our proposed method consists of two main steps: The switching
between full-spectrum lighting sources and the moving object
detection as shown in Fig.1. The first step is based on weather
condition classification of visible images in one of two states:
Normal State that is sunny days under normal weather condi-
tions or Abnormal State, during bad weather conditions such
as rain, snow or fog. In fact, the visible spectrum is used in a
Normal State, while the infrared spectrum is applied in an Ab-
normal State or at night. Relying on this classification result,
our switching method decides which spectrum is to be used in
the next step. Therefore, the moving object detection method
will be applied in the InfraRed (IR) or in the VISible (VIS)
spectra. As previously mentioned, the proposed method adopts
a background modeling method incorporating the principle of
inter-frame difference in the background modeling stage.

2.1. Full-Spectrum Light Sources Switching
As our main objective is to perform correct moving object de-
tection during the whole day whatever the weather condition is,
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Fig. 1. Process of our FSLS-MOD method.

we proposed a new strategy to switch between the spectra light
sources which would allow us to benefit from the advantages
of each of them. This strategy is based on Weather Conditions
Classification Prediction Model (WCC-PM) which is used to
classify the images of the VIS spectrum in Normal State (N.S.)
or Abnormal State (A.S.). The N.S. indicates that the VIS im-
ages were taken on a sunny day at normal weather conditions.
As for A.S., it denotes that the VIS images were taken at night
or during bad weather condition. The WCC-PM is generated
by following a process of knowledge extraction from the data
through a supervised learning technique based on decision trees
and using a large and representative training data set in our pre-
vious works Boukhriss et al. (2015). The decision result of our
WCC-PM allows us to decide which spectrum to use for the
moving object detection. In fact, if the VIS image is in N.S., we
use the VIS spectrum; otherwise, we use the IR spectrum.

2.2. Moving Object Detection

Our study of the state of the art highlights that the back-
ground modeling-based methods are well suited to our objec-
tive. Moreover, given the performance of the inter-frame dif-
ferences based methods, our method relies on the integration
of their principle in the modeling of the background. The
proposed method for moving object detection rests on 4 main
stages which are depicted in the following sub-sections.

2.2.1. Background Model Initialization

In the initialization step, we used three frames (F’, F'!,
F'=2) to build the initial background model (B). In fact, we ob-
tain the initial model resting essentially on the frame at a spe-
cific moment during which the non-moving pixels values are
kept in the model whereas the values of the background pixels
hidden by the moving pixels of this frame are approached re-
lying on the variations among the pixel values of the other two
frames (F'~!,F'~?), using equation 1.

Bi - |FI _ |Fl—1 _ Fl‘—2|| (1)

2.2.2. Background Model Update

In this step, we proposed a selective technique to update the
background model to the changes in background pixels. In fact,
only the pixels classified as background pixels with significant
change, are added to the model. In our method, an analysis of
the spatio-temporal entropies of the pixels is applied to select
these pixels in an accurate way. In addition, we proposed a
dynamic matrix to ensure this selection. In our method, the se-
lective updating of the background model is carried out in three
steps, namely: (i) pixel state card construction; (ii) dynamic

Moving Objects
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matrix update based on the pixel state card; and (iif) background
pixels update.

(i) Pixel state card construction. The pixel state card al-
lows us to restrict the updating of the dynamic matrix to the
background pixels, which reduces the calculation time. This
card is obtained by inter-frame differences based on a spatio-
temporal analysis of the entropy. In fact, the entropy of each
pixel is calculated from a spatio-temporal analysis of its neigh-
borhoods. Classically, the entropy of each pixel is calculated
from a spatio-temporal analysis of its neighboring pixels based
on the distribution of gray levels in a window. Such a calcu-
lation method does not make it possible to distinguish between
the entropy of a moving pixel and that of a noise (i.e. entropy of
a pixel contour of an object of the background). We, therefore,
opted for the calculation of the entropy of each pixel based on
a labeling technique Chang and Cheng (2007).

(ii) Dynamic matrix update. The dynamic matrix is used to
represent the short-term history of the background pixel states.
First, the dynamic matrix &', is initialized by equation 2, us-
ing the mask of moving pixels M. Then, the update of the
dynamic matrix is performed by highlighting the background
pixels at time ¢ and that are moving at ¢t — 1 (¢f. Equation 3).

g,=0 1 M, =1 o)

{sﬂw =1 : M,=0 @)
if &y =1land M} =1then M., =0

{else M, = (3)

(iii) Background pixels update. Two update levels are en-
visaged: frame level or pixel level. The background update
at the frame level is performed when a likelihood test on the
dynamic matrix is verified. This test implies that the input
frame corresponds to a background without moving objects. It
is a way to intercept a frame representative of typical values
of background pixels. If this likelihood test is not verified, the
background update relies on the dynamic matrix to limit the
linear update to a limited number of background pixels.

2.2.3. Subtraction/ Comparison

Following the background model update, a pixel classifi-
cation step into background pixel or foreground pixel is per-
formed to get a binary map for each pixel. For this reason, each
new frame is subtracted from the background model built us-
ing an adaptive threshold allowing us to group the connected
moving pixels in blobs and refine their shapes. The adaptive
threshold is based on a local decision threshold calculated by
the method proposed in Otsu (1979).

2.2.4. Post-processing

This step is carried out to refine the detection results by re-
moving uninteresting moving areas and eliminating holes and
noise from the moving regions.

2.3. Temporal Behavior

Our method of switching between full-spectrum light sources
finds its originality not only in the reduction of the detection
time, but also in the way to reach the objective via an appro-
priate temporal behavior (¢f. Figure 2). Firstly, the speed of
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our approach is ensured by the use of one of the two spectra IR
or VIS, unlike other fusion methods suggested in the literature
which rely on a complementary treatment of the two spectra.
In fact, low-level pixel-based fusion techniques require a syn-
chronization step and the fusion of the two infrared and visible
spectra into a single spectrum. Low-level region-based fusion
techniques, however, perform a “double” detection since the
detection of the moving objects is achieved, first, in each spec-
trum before subsequently merging the obtained results. Sec-
ondly, we have proceeded in two different ways at night and
during the day. Indeed, during the night and especially in an
outdoor scene, the detection of moving objects is better using
the IR spectrum. However, during the day a switch between the
two spectra is interesting especially for winter days that have
alternating weather conditions and brightness variations. For
this reason, and while avoiding a classification of all the im-
ages of a video stream, we proposed to proceed with a periodic
treatment as shown in Figure 2. We begin with the use of the se-
lected spectrum (5 ) resulting from the classification of the first
images. This spectrum is used for the detection of moving ob-
jects during a period P at the end of which a new classification
(C) and selection (S) of the adequate spectrum are performed.
The duration of the period P is empirically defined according
to the season and the geographical location of the scene to be
monitored.

In the following section, several quantitative and qualitative
experiments were identified and detailed to validate and demon-
strate the robustness of our proposed method.

3. Experimental results

In order to evaluate the performance of the proposed method
of moving object detection using full-spectrum light sources,
three series of experiments were conducted. In the first one,
we assessed the performance of our moving object detection
method when facing different challenging situations using only
one of the two spectra IR or VIS. In the second one, we
evaluated the performance of our proposed method of mov-
ing object detection using our switching strategy between the
full-spectrum light sources under different weather conditions,
rather than using each of the two spectra independently. In
the third one, a comparison of our method with three recent
and well-known methods St-Laurent et al. (2013); Mouats and
Aouf (2014); Mangale and Khambete (2016, 2018) of moving
object detection using the full-spectrum light sources was es-
tablished. These methods are based on background modeling
for their moving object detection methods and differ in the way
the IR and VIS spectra data are merged. Before presenting the
results of these series of experiments, we introduced our dataset
and the used evaluation metrics.

3.1. Datasets description

In a first step, to evaluate the performance of the moving
object detection method while facing different challenges (i.e.
moving background, ghost phenomenon, shadows, typical ther-
mal artifacts, etc.) we have used a challenging dataset called
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Fig. 2. Temporal behavior of our full-spectrum light sources switching method.

CD.net 2014'. This dataset covers a wide range of detection
challenges and is representative of typical indoor and outdoor
visual data Wang et al. (2014). In a second step, to assess
the performance of the proposed method for moving object
detection exploiting full-spectrum light sources, we used two
popular databases with typical weather conditions. The first
dataset was extracted from the OTCBVS Benchmark Dataset,
namely, “OSU Color-Thermal Database” Davis and Sharma
(2007). This dataset consists of thermal/color video pair se-
quences recorded on the Ohio State University campus during
the months of February and March 2005. These sequences, in-
volving 320*240 pixel-sized images, were captured on a cloudy
day, with fairly constant illumination and soft/diffuse shadows.
A manual segmentation of the moving object regions was per-
formed on 42 images both in VIS and IR sequences for the
quantitative evaluation. The results of the manual segmenta-
tion of each pair of IR and VIS images were merged using the
logical AND to ensure on accurate segmentation of moving re-
gions. The second dataset is the “INO Video Analytics dataset”
which is made available with its ground-truth frames by St-
Laurent et al. (2007). This dataset consists of ten thermal/color
video sequences. As our aim was to overcome the challenges
related to the low illumination and bad weather conditions, we
selected eight pair thermal/color video sequences which are the
most representative sequences recorded in various locations and
covering different weather conditions. Table 1 provides a brief
summary of the video sequences used in our experiments al-
lowing a rich test field to validate our proposed method.

Table 1. Detalls of the OTCBVS and INO datasets
IR/VIS ‘Weather Moving
Datasets Sequences mee< Conditions Objects Description Challenges
Daytime scene with
otcpvs | OSUCOlT | ig0e | N Person monotonous Shadows(VIS)
Thermal . . - Halos(IR)
illumination condition
at Deposi :
C"“: CS?"‘“ 551 NS Car & Person Sunny day Size and Speed
Mam(]sll:zn)'ance 2030 NS Car & Person Sunny afternoon Size and Speed
INO B -
Parking Snow " Daytime on a .
PS) 2941 NS Car & Person cloudy day Occlusion
Tose-Pers
c e | 20 NS Person Sunny day Camouflage
Gro;lg;lgh& 1482 NS Car & Person Daytime scene Occlusion
Multiple Deposit 2400 NS Car & Person Daytime scene large 1ll.un.1mauon
(MD) variations
Parking Evening ) - ._.‘ Tow Contrast of
(PE) 820 AS Car & Person Evening scene Moving Objects
Visitor Parking Cloudy and Low Contrast of
(VP) 472 AS Car & Person rainy day Moving Objects

Uhttp://jacarini.dinf.usherbrooke.ca/

3.2. Evaluation metrics

For the first and second series of experiments, aiming at eval-
uating the effectiveness of the proposed method, we relied on
the confusion matrix. From this confusion matrix, Recall (R),
Precision (P) and F_measure (F) were measured using the set
of ground truth images, to investigate the performance of our
method. The Recall rate was calculated to know the fraction of
moving object pixels that were correctly detected (cf. Eq. 4).
The Precision rate stands for the rate of the correct classifica-
tion (¢f. Eq. 5). The F_measure Liu and Zsu (2009), which is
the harmonic mean of Recall and Precision was used. In fact, a
higher F'_measure value corresponds to a higher value of Recall
and Precision (cf. Eq. 6).

Recall = TP+FN )
Precision = % (5)
F_measure = 2;,% (6)

Where, (TP) is the number of True Positives, (FP) of False Pos-
itives and (FN) of False Negatives.

The third series of experiments consists of comparing our
method with four recent and well-known methods from the
literature namely those of St-Laurent et al. (2013); Mouats
and Aouf (2014); Mangale and Khambete (2016, 2018). The
authors of Mouats and Aouf (2014); Mangale and Khambete
(2016, 2018) used the same evaluation metrics whereas the au-
thors of St-Laurent et al. (2013) computed the following met-
rics: the Jaccard coefficient (J) (cf. eq. 7), the Detection Rate
(DR) (cf. eq. 8) and the False Alarm Rate (FAR) (cf. eq. 9), to
evaluate their results of moving object detection. To compare
the results of our method with those of St-Laurent et al. (2013),
the metrics J, DR and FAR were calculated.

I = r5tberm N
_ _TP

DR = 555y ®)

FAR = TP+FP ®

3.3. Results and Discussion

In this section, the results of the three series of experiments
were detailed and discussed.
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3.3.1. Results of the Moving Object Detection (MOD) method

To evaluate the performance of our MOD method, we have
compared the obtained results on the CD.net 2014 dataset with
recent methods of Sajid and Cheung (2017), Jiang and Lu
(2018), Paul et al. (2017), Braham et al. (2017) and Wang et al.
(2018). In fact, we present in Table 2 a category wise com-
parison, in terms of average of F-measure. Our method has
recorded comparable rates and even outperforms the results of
some recent methods.

Table 2. Category-Wise Comparison (Average of F-measure) on the CD.net
2014 Dataset

Methods Baseline Im(‘)ll:.llov‘ Dy;‘é’mlc Shadow | Thermal
Our MOD 0,912 0,799 0,616 0,885 0,819
Sajid and Cheung (2017) 0,888 0,763 0,783 0,776 0,789
Jiang and Lu (2018) 0.941 0.739 0.744 0.869 0.796
Paul et al. (2017) 0,966 - 0,709 - -
Braham et al. (2017) 0.960 0.787 0.949 0.924 0.822
Wang et al. (2018) 0,932 0,694 0,686 0,897 0,745

Although our method does not record the best rates in all the
categories compared to the other works, it has a competitive
computation time. In fact, to estimate the temporal complex-
ity of our method, we have reported the average computation
time (in seconds) per frame for moving object detection and
this for each sequence category of CD.net 2014 dataset. Table
3 shows the average computational overhead calculated over
a fixed buffer size of 15 frames for each video category. Fur-
thermore, we have compared our average time consumption per
frame against other moving object detection methods of the lit-
erature Paul et al. (2017) Pojala et al. (2011) Zheng et al. (2006)
Jodoin et al. (2007). In fact, the results presented in Table 4
show that our MOD method records the best computation time
rates.

Table 3. Computational overhead (in sec) per input frame for different
video categories

Video . Int. Obj. | Dynamic | ) Average
Category Baseline Mot. BG Shadow | Thermal Time
Time (s) 1,221 1,312 3,274 2,941 1,56362 2,06

Table 4. Computational comparison of our Moving Object Detection
(MOD) with other methods

Methods A?g;) Paul et al. (2017) | Pojala et al. (2011) | Zheng et al. (2006) | Jodoin et al. (2007)
Average
Time 2,06 2,78 3.65 246 2,97
ion (s)

The importance of our framework is linked to the complexity
of the observed scenes with a variety of challenges. Our moving
object detection method has proven its potential to overcome a
lot of challenges. Figure 3 shows some qualitative results that
prove the strengths and the weaknesses of our method for mov-
ing object detection (MOD). In fact, the first three lines show
the performance of our method to detect moving objects with
different sizes and different speeds (vehicle, cyclist and pedes-
trian). It is obvious that these lines met the challenges of the
background movement and the shadows casted by moving ob-
jects. This worth reminding that the elimination of cast shad-
ows was achieved relying on our previous work Jarraya et al.
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(2012). Likewise, our method performs well in IR spectrum
and overcomes many artifacts presented in IR videos such as
camouflage effect, ghost, heat reflection on floors and windows
and heat stamps (e.g., bright spots left on a seat after a per-
son gets up and leaves) (cf. line 4 in Figure 3). Nevertheless,
our MOD method has failed to eliminate the strong background
motion (parasite) as it is the case in the sequences of the dy-
namic background category (cf. line 5 in Figure 3). Finally, as
our background model is regularly updated to adapt to different
changes in the scene, any abandoned object in the scene, after
a few frames, becomes as an element of the background model.
However, in some sequences of CD.net2014 dataset the aban-
doned object sometimes remains detected in the Ground-Truth
(GT) images which have affected our detection results.

Result of MOD

Mask of MOD Ground-Truth

Int.Obj.Mot.
Seq: Wint.Driv.
#1942

Baseline
Seqé Pedestrian

Baseline
Seq: Highway
#658

Thermal
Seq: Park
#366

Dynamic BG
Seq: Boat
#7084

Baseline
Seq: Pets 2006
#1142

Fig. 3. Qualitative Results of MOD on CD.net2014 Dataset.

3.3.2. Independent spectra vs. switching between full-spectrum
light sources under different weather conditions

The main purpose of this series of experiments was to evalu-
ate the robustness of the proposed method for moving object de-
tection. The originality of the proposed method lies in its ability
to perform the task either on the IR or on the VIS spectra ac-
cording to the level of illumination and the state of the weather
conditions. In fact, we set forward a new strategy to switch
between the spectra light sources based on weather conditions
classification prediction model. This series of experiments tar-
geted two objectives. Firstly, we aimed to prove the robust-
ness of our moving object detection method on the IR spectrum
and VIS spectrum independently. Secondly, we attempted to
assess the effectiveness of our switching method between the
full-spectrum light sources. To this end, we started by present-
ing the classification rates of our prediction model WCC-PM
on each sequence of the test dataset. Then, we proved the ef-
ficiency of our switching method against using each spectrum
independently under different weather conditions.

‘We began by assessing quantitatively our moving object de-
tection method in each spectrum independently. Indeed the re-
sults presented in table 5 highlight the high accuracy recorded
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Table 5. Moving object detection results, in terms of Recall (R), Precision
(P) and F _measure (F), in the IR and VIS spectra on each sequence of the
test dataset

OTCBVS | CD | ME | PS | CP | MD | GF | PE | VP
] R| 9923 | 82,89 | 54,65 | 72,42 | 70,65 | 62,59 | 80,07 | 81,75 | 82,04
Spectrum | £ | 7769 [ 95T 89,55 | 7442 | 7588 [ 6277 | 8191 | 92,02 [ 72.34
F | 8715 | 8858 | 67,88 | 734 | 73,17 | 62,68 | 80,98 | 86,67 | 76,88

vis K| 9375 [9439 | 7422 | 8372 | 7817 | 7519 | 6821 | 757 | 8577
Spectrum | £ 999272 89,89 | 96,65 | 92,95 | 8226 [ 9892 | 4773 | 4965
F | 9635 | 9355 | 81,31 | 89,72 | 84,92 | 78,89 | 80,75 | 58,55 | 629

Table 6. Correct Classification Rates (CCR) of our WCC-PM on each se-
quence of the test dataset in VIS spectrum
[OTCBVS | CD | ME| PS | CP | MD | GF | PE | VP |
[CCR% | 100 | 99.41 | 100 | 98.88 | 100 | 99.75 | 97.91 | 100 | 99.36 |

in all sequences, proving the performance and the efficiency of
our method. The PE and VP sequences display low precision
values in the VIS spectrum, owing to the low contrast and visi-
bility of the moving objects. These sequences were recorded in
the evening with a low illumination and in bad weather condi-
tions, as well.

The originality of the proposed method resides in our switch-
ing strategy between the full-spectrum lights sources. Our
method is based on a weather conditions classification step of
visible images. From this perspective, Table 6 displays the Cor-
rect Classification Rate (CCR) of our prediction model WCC-
PM on each sequence of the test dataset whose images are clas-
sified as in A.S. or in N.S. Indeed, the OTCBVS, CD, ME, PS,
CP, MD and GF sequences images are classified as in N.S. re-
spectively with the following CCR percentages: 100%, 99.41%,
100%, 98.88%, 100%, 99.75%, 97.91%. On the other hand, the
PE and VP sequences were classified as in A.S. with a CCR of
100% and 99.36%. These findings reflect the robustness and
feasibility of our prediction model in terms of the correct clas-
sification of VIS images.

To confirm the effectiveness of our switching method, we
compared the results of the detection of moving objects ob-
tained using the IR spectrum, the VIS spectrum and the switch-
ing between full-spectrum light sources. The results are sum-
marized in Table 7, in terms of average of Recall, Precision
and F-measure of all the sequences of our datasets. These re-
sults prove the effectiveness of our method of moving object
detection based on the switching between full-spectrum light
sources. In fact, the recorded rates by our switching strategy
exceeded those obtained using each spectrum separately. For
example, the F-measure increased from 77,487% (using only
the IR spectrum) and from 80,992% (using only the VIS spec-
trum) to 86,41% using our switching between the full-spectrum
light sources.

Table 7. Moving object detection results, in terms of Recall, Precision and
F-measure according to the spectrum used

IR-VIS switching
IR Spectrum | VIS Spectrum method
R 76,254 81,656 82,14
P 80,21 83,154 90,6
F 77,487 80,992 86,17
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3.3.3. Comparison with state-of-the-art methods

In this series of experiments, we established a compari-
son between our work and four recent works in the litera-
ture, namely, the work of St-Laurent et al. (2013), Mouats and
Aouf (2014), Mangale and Khambete (2016) and Mangale and
Khambete (2018). These methods are similar to ours as they
propose detection methods based on background modeling us-
ing the full-spectrum light sources. The comparative study
was performed using the same metrics and the same sequence
frames presented by each work. Since they use neither the same
metrics nor the same sequences, we compared our results with
each of them independently. In a first step, we compared our
results to those of St-Laurent et al. (2013) which proposed a fu-
sion of thermal and color images for moving object detection
in an outdoor environment. Their method is based on a back-
ground modeling approach and on a pixel-level fusion of VIS
and IR spectra. In fact, they fused the data from both sensors in
a single hybrid codebook in which each pixel is represented by
L CodeWords (CW) that are the Luma, Chroma orange, Chroma
green of the YCoCg color space, Thermal values and some pa-
rameters to match the pixels CW. In order to maximize the de-
tection accuracy, they proposed to update the thermal detection
threshold at every frame based on a periodically updated stan-
dard deviation (temporal sensor noise), and on a weighted de-
cay of the intensity variation measured on previous consecutive
thermal frames. However, to adjust this threshold the user man-
ually sets the values of the four parameters in each video se-
quence, which is the major drawback of their proposed method.
Table 8 displays the quantitative comparison results between
our method and the work of St-Laurent et al. (2013) in terms of
DR, FAR and J metrics on CP, GF, PS and MD sequences. The
fact that their detection results somehow achieve higher rates
than ours, does not diminish the intrinsic added value of our
proposed method in any way. In fact, this superiority is basi-
cally due to the use of a set of optimized parameters fixed by
the authors for each video sequence, which is not the case in
our method.

Table 8. Comparison of the performance of the proposed method with the
work of St-Laurent et al. (2013)

St-Laurent et al. (2013) | FSLS-MOD

DR 0,898 0,782

cp | J 0,7974 0,729
FAR 0,123 0,071

DR 0,935 0,755

GF | J 0,85 0,736
FAR 0,097 0,027

DR 0,947 0,837

PS | J 0,894 0,813
FAR 0,059 0,034

DR 0,845 0,758
MD | J 0,6892 0,62
FAR 0,211 0,177

In a second step, we compared our results with those of
Mouats and Aouf (2014). These authors proposed a moving
object detection method based on background modeling using
the Gaussian mixture models and presented different strategies
to fuse the IR and VIS spectra. In fact, we compared our results
with the two best of theirs. The first one combines data from
the thermal and visible cameras prior to background subtrac-
tion. The three channels of the visible camera are reinforced
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Table 9. Comparison of our detection results using the full-spectrum light
sources with those of Mouats and Aouf (2014); in terms of F_measure av-

erage on GF, PS, PE and MD sequences

RGBT Fus85IR-15VIS
Mouats and Aouf (2014) | Mouats and Aouf (2014) FSLS-MOD
GF 0,819 0,852 035
Ps 0,717 0.9 0,897
MD 0,802 0,649 0,789
PE 0,694 0,812 0,867

Table 10. Comparison of the obtained precision rates of our method and
those of Mangale and Khambete (2016) using full-spectrum light sources

Mangale and Khambete (2016) | FSLS-MOD
GF 0,793 0,988
PS 0,822 0,987
CP 0,959 0,947
CD 0,652 0,916
ME 0,954 0,885

with information from the IR camera. Therefore, pixels are
modeled using a 4D vector (RGBT) rather than the original 3D
(RGB) formulation. All the pixel channels are weighted equiv-
alently meaning that no preference is attributed to any sensor.
In the second image fusion, they generate a fused image us-
ing a linear combination of IR and VIS images. The back-
ground subtraction is then run on the fused image. Their best
combination, named 85/R-15VIS, is the one that integrates 85%
of thermal information with 15% of visible information in the
fused images. However, their foreground segmentation is very
scene dependent as the detection results vary considerably from
one sequence to another. Table 9 shows a comparison between
our detection results and those of Mouats and Aouf (2014) in
terms of F-measure average on GF, PS, MD and PE sequences.
In fact, our method gives comparable results and even outper-
forms their results using one of the two low-level fusion meth-
ods (Fus85IR-15VIS and RGBT). We outperformed their meth-
ods owing to our switching strategy which allows us to benefit
from the quality of the full-spectrum light sources, without hav-
ing to correlate the spectra or to generate a fused spectrum.

In a third step, we compared our method to that of Mangale
and Khambete (2016). The authors detected the moving objects
by a background modeling method carried out on each spec-
trum independently; then, the foreground regions are merged by
a low level fusion technique. Indeed, their fusion is achieved by
a logical OR” operation between the masks of the foreground
regions. The comparison of our detection results with those
of Mangale and Khambete (2016) is presented in Table 10, in
terms of average precision of an image set selected by the au-
thors in each sequence. As shown in this table, we achieved the
best rates in almost all the sequences. For example, in GF, PS
and CD sequences we reached respectively the precision rates
of 0.988%, 0.987% and 0.916% compared to 0.793%, 0.822%
and 0.652% recorded by Mangale and Khambete (2016), ex-
cept for the ME sequence, where we achieved 0.885% while
the authors of Mangale and Khambete (2016) reached up to to
0.954%.

Finally, in the recent work of Mangale and Khambete (2018)
the authors have proposed a new approach for the detection of
moving objects using a structural similarity metric (SSIM) and
the Gaussian mixture model (GMM). The SSIM was used to
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compute structural similarity map between the reference mean
background frame and the foreground frame of visible spectrum
(VIS) and thermal infrared (IR) independently. The threshold
results of SSIM were applied to this map to find the moving
objects and then a fusion of the VIS and thermal IR modality
was carried out using different pixel-level fusion methods such
logical "OR”, discrete wavelet transform, and principal compo-
nents analysis. Finally, they used a temporal analysis to elimi-
nate noise using GMM on the fused results. Table 11 shows a
comparison between our FSLS-MOD method and their results
using logical OR rule to fuse the IR and VIS spectra, in terms

of average of Recall, Precision and F-measure metrics in the
GF, PS, PE, CP, ME, CD and MD sequences. All the methods

Table 11. Comparison of the performance of our FSLS-MOD method with

the work of Mangale and Khambete (2018)

Mangale and Khambete (2018) | FSLS-MOD

R 0,7925 0,755
GF | P 0,9797 0,973
F 0,8561 0,851

R 0,6339 0,837

PS | P 0,8543 0,967
F 0,7243 0,897

R 0,8107 0,818

PE | P 0,8497 0,922
F 0,8391 0,867

R 0,7934 0,782

CP | P 0,9718 0,93
F 0,8758 0,85

R 0,7770 0,742
ME | P 0,7569 0,899
F 0,7574 0,813

R 0,6267 0,944
CD | P 0,8390 0,927
F 0,7240 0,935

R 0,6947 0,758
MD | P 0,7643 0,823
F 0,7107 0,789

presented above have proposed moving object detection meth-
ods based on low-level fusion methods to fuse the IR and VIS
spectra. Their fusion methods require either to generate new
images on which the detection method is executed St-Laurent
et al. (2013); Mouats and Aouf (2014) or to apply the fore-
ground detection method on each spectrum implying that these
regions are merged by a sort of fusion method Mangale and
Khambete (2016, 2018). This fusion is of a very low process-
ing level. Indeed, in the case of bad weather conditions, the
noise recorded in the VIS spectrum will be transmitted to the
fused image, which degrades the quality of the images and in-
fluence the performance of the detection methods. As far as, the
hot summer day is concerned, the IR image will provide a lot of
hot areas or objects. As a matter of fact, the IR camera would
act poorly and a low level fusion would transfer this weakness
to the merged images. For this reason, our proposed switching
method seems to be a better candidate for a fusion of a higher
processing level which takes into account intelligent informa-
tion in a more powerful way, depending on the situation and
the context in which the system is running. The high accuracy
recorded by our method proves the effectiveness and the feasi-
bility of our system to run under different situations and various
weather conditions.
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4. Conclusion

In this paper, our central focus was upon overcoming the
challenges related to the low illumination and weather condi-
tions such as fog, snow, rain, darkness, etc. Thus, we proposed
a new method of moving object detection using a switching
strategy between the full-spectrum light sources so as to ben-
efit from the advantages of each spectrum. The originality of
our method stems from the fact that we performed our detection
alternating the IR and VIS spectra depending on the illumina-
tion level and the weather condition state in the VIS images.
Furthermore, our moving object detection method is based on
background modeling incorporating the principle of inter-frame
difference in the background modeling stage. An experimental
investigation was performed proving the effectiveness of our
moving object detection method based on a switching strategy
between the full-spectrum light sources. At this stage of anal-
ysis, we would assert that our research is a step that might be
taken further. Our promising results offer different prospects
and open new horizons for future works to examine the seman-
tic classification of the detected moving objects in the IR and
VIS spectra in order to fulfill a constructive and fruitful contri-
bution to the field.
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